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We study ultrasonic waves in complex (strongly scattering) media.

Ordered media (phononic crystals):
- ultrasound tunneling
- focusing effects

Random media: 
-  ballistic and diffusive wave transport
-  new ultrasound scattering techniques (DSS & DAWS)

For more info and papers, see  www.physics.umanitoba.ca/~jhpage



OUTLINE - Diffusing Acoustic Wave Spectroscopy (DAWS):

• Motivation:  what can we learn about the dynamics of strongly scattering materials
and wave phenomena using ultrasound?

• How the technique works and what it measures:
DAWS is one of two techniques in Ultrasonic Correlation Spectroscopy for measuring
the dynamics of materials from the fluctuations of the speckle pattern.

               Dynamic Sound Scattering: uses singly scattered ultrasound to determine
                 absolute motion - analogous to Dynamic Light Scattering [Borne & Pecora, 1976].

               Diffusing Acoustic Wave Spectroscopy: uses multiply scattered
                 ultrasound to measure relative motion - analogous to optical Diffusing Wave
Spectroscopy [Maret and Wolf, Z. Phys. B 65, 409 (1987); Pine et al., PRL 60, 1134 (1988)].

• Using DAWS to probe fundamental properties of multiply scattered waves:
       phase statistics for temporally varying fields.
       intensity and field fluctuations: breakdown of the Siegert relation for correlated
motions of the scatterers.

• An application:
               Studying the dynamics of fluidized suspensions of particles.
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Motivation:
In strongly scattering materials...

•  The scattered wave fields may be completely
dominated by speckle.

•  Ultrasound may be multiply scattered.

� Model the propagation using the diffusion approximation:
propagation of multiply scattered ultrasonic waves is treated as a random
walk.   (D = vE l*/3 )

•  Motion of the scattering particles may be complex.
(e.g. fluidized beds)

�  direct imaging may break down

�  difficult to use Doppler ultrasound

Question:  How can we use ultrasound to investigate the dynamics of
such strongly scattering materials?



Some advantages/features of correlation spectroscopy with ultrasound:

• Length and time scales for ultrasound
          set by the wavelength:  � �1 mm
          &                      period:  T � 1 �s
�  can investigate dynamics on longer length scales than is possible
with light or X-rays (very much larger for seismic applications)

• “Field fluctuation spectroscopy” - measure the scattered field, not the
intensity:
      � measure the field correlation function g1(�) directly
      � can investigate phase…

• Use pulsed techniques (usually) - enables:
      � near-field DSS (determine the scattering angle from the transit time)
      � DAWS at fixed multiple scattering path length (much simpler analysis)



Dynamic Speckle PatternUltrasonic Correlation Spectroscopy (DSS
& DAWS)  (Cowan et al., Phys Rev. Lett. 85, 453
(2000); Cowan et al., Phys Rev. E, in press (June 2002))

• When the scatterers (e.g. particles) move,
the speckle pattern fluctuates.
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•  DAWS determines the motion of the scatterers
from the temporal autocorrelation function g1(�) of
the transmitted ultrasonic field fluctuations �(t).
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•  The decay of g1(�) results from the total change in
phase of the scattered ultrasonic field due to the
scatterers’ motion.

 g1(�)  �  �½  when �� � 1 rad.



Fluidized suspensions - an example of a strongly scattering system with
interesting dynamics:

• Challenging scientific questions
Complex behaviour due to hydrodynamic interactions
between particles. (involves the interplay of  Newtonian particle
dynamics and Navier Stokes fluid dynamics over a wide range of
length scales)

• Both fluidized and sedimenting suspensions have
very large velocity fluctuations  (�V � Vflow) that
are correlated over large distances �.

• What determines the magnitude of �V and � ?

        - How does �V depend on volume fraction �?

        - How does �V depend on system size L?

        - How does �V depend on Reynolds number Rep ?

• Important practical applications  (e.g. slurry bed
reactors, flow of slurries in pipelines…)

[Segrè et al., PRL
79, 2574 (1997)]



Typical DAWS experimental setup

Sounds of an aquarium...
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The fluidized bed has a rectangular cross section, and was immersed in a temperature
regulated water tank.  It contains monodisperse 0.875-mm-diameter glass beads
suspended in a mixture of water and glycerol.



Dynamic Sound Scattering (DSS)
(Cowan et al., Phys Rev. Lett. 85, 453 (2000); Cowan et al., to be published)

DSS measures the mean square displacement of the particles
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where ��rq
2(�)� is the mean square

displacement of the particles along q�

� � � �

� � � �

� �

� �

1

21
2!

21
2

21
2

exp

1 ...

1 ...

exp

p

p p

p

p

g i

i

� � �

� � � �

� �

� �

� �� � �� �

� � � � � �

� � � �

� �� �
� �

�

Evaluate ensemble and time average
using a cumulant expansion

Hence the correlation function
in DSS is

�



0.01 0.1 1
1E-3

0.01

0.1

1

10

�

 2

 

< 
�

r y2  >
 (m

m
2 )

TIME (s)

By measuring ��rq
2 ( �)� versus �,

we determine:

2
qrmsV V� � �

c rms cd V t�

(the rms particle velocity along     )

(the dynamic correlation length)

For ballistic particle motion:

� �

2 2

2

2 2

2( )
1

q
q m

c

qV

V
r

�

�

� �

�

�

� �

��

�

�
�

�

�
�� �

�

�

�

(for small��)

�q

Mean square displacement



45�, in sampleqz

qy

qx

z
xy

Vertical

Horizontal

Reflection

All three components of root mean square particle velocities Vrms can be
measured

Experiment

(a)  DSS far-field scattering geometries:
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fluidized bed, showing the dependence on volume fraction.

(Vf  is the average fluid velocity.)
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(b)  DSS near-field scattering geometry:

•  Measure scattered field in a single near-field speckle using a miniature
hydrophone (d < �)

•  Determine the scattering angle from the transit time

•  Measure total rms velocity in the scattering plane
2 2

, ,rms rms x rms yV V V� �
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Diffusing Acoustic Wave Spectroscopy (DAWS)
(Cowan et al., Phys Rev. Lett. 85, 453 (2000); Cowan et al., Phys Rev. E, in press (June 2002))

(a)  Pulsed DAWS
Measure the field fluctuations for
multiple scattering paths of fixed
length s = (n + 1)l*, where n is the
number of steps.

The decay of g1(�) is determined
by the total phase change ��(n  ) (�)
for paths containing n steps. Along
the blue path in the figure

INCIDENT
SOUND

� � � �

� � � �

( )

1
1 , rel

0 1
- , *

nn
p

p
n n

p p pp p
p p

k r r k r l

� � � �

� � �
� �� � � �� � � �� �

	 
� �	 
� �

�

�

� �

� � �

� � � � � ��

�

� �
� �

� � �

DAWS uses multiply scattered (diffusing) ultrasound to measure the relative
motion of scattering particles that are located a transport mean free path l*
apart.

(phase change due to motion of the first
and last scatterer relative to source and
detector) - small contribution for large n.
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The field autocorrelation function is
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The field autocorrelation function can be simply written as

� � � �
2

2
1 relexp ,

6
nkg r l� �

�
� �
� �� �
� �

�

where ��rrel
2(�, l*)� is the relative mean square displacement of particles located a

distance l* apart.

N.B.: g1(�) can also be expressed in terms of the average local strain as

� �
2 2

2
1

*exp
6

nk lg � �

� �
�� �
� �

�

� � � �
22 2 2

,

2
5 2 ,ii ij rel

i j
r l l� � � �

� �
� �

� � � �� �
� �	 

� �

where

and �ij is the local strain tensor

where ui(�) are the components of

� �
� � � �1

2
ji

ij
j i

uu
r r

��

� �

� ���
� �� �� �� �� 	

� �r ��
�

(c.f.:  Bicout and Maynard, Physica A 199, 387 (1993); Bicout and Maret, ibid 210, 87 (1994))
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A sequence of transmitted waveforms in pulsed DAWS, showing that the
field fluctuates more rapidly as the path length (and n) becomes longer.



- In pulsed DAWS, a train of pulses is sent into the sample.

- The scattered field is sampled at a particular time after each pulse (using a boxcar).
- Therefore the sampling time  ts sets the average path length, ts = s / ve  � n l*/ ve.
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to determine ��r2
rel  (�)�  -   the

relative mean square
displacement of particles
located a distance l* apart.
(independent of the sampling
time, as it should be!)

[requires measurements of l*, ve
and k = �/ vp   -   Page et al., PRE
52, 3106 (1995); Schriemer et al.,
PRL 79, 3166 (1997); Page et al.,
Science 271, 634 (1996); Cowan et
al., PRE 58, 6626 (1998).]
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Shortest length scale on which the relative mean square displacement can be
measured  [determined by l* at our highest frequency (2.35 MHz)]

compared with the average nearest neighbour separation dnn.
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DAWS measures the relative motion (�Vrel ) of scatterers separated by l*:
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- By changing the frequency l* can be varied.

- Vrms can be measured using single scattering at a low frequency (DSS).

- Thus the instantaneous velocity correlation length � can be estimated.

Length Scale Dependence of �Vrel



Length Scale Dependence of �Vrel
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n > 20.
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                                                                                   and z0 and h are the penetration
depth and extrapolation length of diffusing sound.

(b) Continuous wave (cw) DAWS

Potential advantages

• monochromatic ultrasonic waves - can avoid possible complications if
there is a strong frequency dependence of ve and l* because of dispersion.

• can measure faster dynamics (no delay due to the pulse repetition rate).

But g1(�) is more complicated for cw DAWS (need to include absorption and
correct boundary conditions for diffusing sound):
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Some typical results for DAWS in fluidized suspensions.
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Summary: what field fluctuation spectroscopy measures in fluidized
suspensions

DSS measures
2

qrmsV V� � � the rms particle velocity along q�

c rms cd V t� the dynamic correlation length

DAWS measures
2

rel relV V� � � local rms relative velocity fluctuations

relsepd V �
�
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Average change in particle separation before
interactions change the local particle  trajectories:

Combine DSS and DAWS to determine

          �            instantaneous velocity correlation length



Question:  What can we
learn from the amplitude
and phase fluctuations of
multiply scattered
ultrasonic waves?

Experiment:

•Pulsed technique

•Record a short
segment of the
scattered wave for
each input pulse. �
Extract the phase and
amplitude fluctuations.
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Amplitude and wrapped phase fluctuations
Our experiments measure the amplitude and the “wrapped phase” [- � : �], for
multiple scattering paths of fixed length, as function of time.
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First-order speckle statistics  (scattered field: complex Gaussian random variable)
[Goodman, J. Opt. Soc. Am. 66 1145 (1976)]
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Phase information:  The Wrapped Phase Difference Probability
Distribution

Information on the particle dynamics is contained in the phase difference
��(�) = �(t+�) - �(t).

The scattered ultrasonic field

is a complex Gaussian random variable.  (C1 approximation.)

The statistics of the phase difference can be obtained from the joint
probability distribution P(�t, �t�) of the fields at times t and t� = t+�  (for
useful background, see Goodman, Statistical Optics (1985); van Tiggelen et al.
Phys. Rev. E 59, 7168 (1999)).  For a complex Gaussian process, P(�t, �t�) can
be written
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Normalize the fields so that ��i �i
�� = ���(t) �2� = 1.  Then Cij is

where g1 = ��i �j
�� = �� (t) ��(t�)� is the field autocorrelation function.  Express

P(�t, �t�) in terms of amplitude and phase:
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Next, integrate out At ,  At�  and �t  at constant �� (�) to obtain the wrapped
phase difference probability distribution:
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The wrapped phase difference probability distribution

where                                                    is the average change in the phase of all paths
containing n scattering events, over time �.]

gives information on the particle dynamics through its dependence on g1(�).
[Recall that for pulsed DAWS, � � � �21
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Relationship between the wrapped phase moment ��� 2�  and the
particle motion.

From P(��), calculate numerically ���p
2�  (the variance of the phase change for paths

p of length n) as a function of  ���wrap
2�  (the variance of the wrapped phase).

Allows the relative motion of the scattering particles, ��rrel(�)2� to be determined
directly from the wrapped phase moment ���wrap

2�.



Particle dynamics from the temporal evolution of the phase difference �� (�)

Excellent agreement with measurements of the relative mean square displacement
��rrel

2 ���� from the field correlation function in DAWS
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Cumulative phase
- By unwrapping the phase, the jumps of 2� can be removed, giving the cumulative
phase.
- The cumulative phase allows the phase changes to be followed for longer times.
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The wrapped and cumulative phase difference probability distributions.
    For large �, wrapped phase:     P���� 	 triangle function

cumulative phase: P���� 	 Gaussian

Can additional information on the dynamics be obtained from the cumulative phase?
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Summary - phase statistics

Experiments and theory for the temporal fluctuations of the phase of
multiply scattered ultrasonic waves in fluidized suspensions:

•  a beautiful example of mesoscopic wave phenomena - excellent
agreement between theory and experiment for the wrapped phase difference
probability distribution P(��,�).

•  an alternative approach for investigating the dynamic behaviour of
multiply scattering systems - excellent agreement with “traditional” Diffusing
Acoustic Wave Spectroscopy (DAWS).



Amplitude information � measure simultaneously the scattered
intensity and field to investigate the validity of the Siegert Relation.

Determine the intensity correlation function from the amplitude fluctuations,
[I(t) � A2(t)]:
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Question:  Does the Siegert relation break down when the motions of
the scatterers are correlated?

• relates the intensity correlation function to the field correlation function

• valid for complex random Gaussian fields

• often used in light scattering to relate measurements of G2 to theory for g1
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Pulsed DAWS:  Deviation from the Siegert relation as a function of
path length - significant for n < 10.

• Motion of the particles in a path
containing 10 steps is strongly
correlated:

    Particle velocity correlation volume
 500 (� =.25) 
 �3 
  5000 (� =.5) mm3

    Typical volume probed by diffusing
sound for 10 scattering events
    130 (� =.25) to 17 (� =.5) mm3

� Siegert relation breaks down for
short paths

• Siegert relation is valid for n >10
because the phases of multiply
scattered waves along different
scattering paths are no longer
correlated for n > 10.
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Origin of the breakdown of the Siegert relation for short paths -
examine single scattering (DSS)
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where h(R) gives the fraction of particles in scattering volume separated by R.

Bonus:  compare g2(�) and �g1(�)�2 to measure the spatial-temporal correlation function
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scales, determined by the scattering
volume, than are accessible to DAWS.
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dependence at
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Volume Fraction Dependence - Blob Model

Consider a “blob” with N particles in a volume V � � 3, with a deficit (or
surplus) of �N particles.

- balance buoyant force and viscous drag on the “blob”:

- �  =  viscosity of the suspension
   �N = N 1/2  for random particle positions.

Experiments of Lei et al., PRL 2001 : number fluctuations suppressed at
long length scales, cut off Vrms.

Segrè et al., Nature (2001):  number fluctuations also suppressed at high �
by volume exclusion effects.

Question:  Do number fluctuations set the correlation length?
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Blob model scaling
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Comparison with experiments at low Rep
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Local fluctuation picture

Question:
      Do local fluctuations set the magnitude of Vrms ?

Our data indicate:

   �Vrel(rnn) is independent of Lz , while Vrms and � are not.

   �Vrel(r) � r1/2 until the divergence is cut off at � (by wall,
       inertial or other intrinsic effects).

But
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Suggests
          �Vrel(rnn) may be the fundamental quantity that sets Vrms / ��.
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Reynolds Number Dependence

• For thin samples,
both Vrms , � are
independent of
Reynolds number up
to Rep  = 7.  (Wall
effects dominate.)

• In our thickest
sample, inertial
screening decreases
Vrms , � at Rep  = 7.
(�screening < �walls )



Conclusions

I have described two new ultrasonic techniques :
•  Dynamic Sound Scattering (DSS)
•  Diffusing Acoustic Wave Spectroscopy (DAWS)
�  powerful new approaches for investigating the dynamics of strongly
scattering media where direct imaging fails.
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Some applications of DSS and DAWS...
•  fundamental studies of particle dynamics
e.g. understanding the large velocity fluctuations in fluidized beds -
dependence on volume fraction �, system size L and Reynolds number Re:

•surprisingly large increase in  Vrms and �  at high �   - our data suggest that suppression of
number fluctuations is important.
• Weak dependence of Vrms and � on the smallest cell dimension at Rep ~ 1.  (Walls cut off �
and hence Vrms (via the Oseen wake?); �Vrel is unaffected.)
• Inertial screening of Vrms and �  only seen at Rep = 7 in our thickest sample.

• fundamental studies of wave phenomena  in strongly scattering media.
e.g.  Phase statistics of temporally fluctuating multiply scattered fields
        Breakdown of the Siegert relation due to particle velocity correlations
• new applications in the nondestructive evaluation of strongly scattering
media
e.g. monitoring fish in a cavity (de Rosny & Fink)
       measuring velocity changes with temperature (Weaver, Gret)
       seismic monitoring (CWI - Colorado group; Paris-Grenoble group)
       process control...




